Note: The default ITS GitLab runner is a shared resource and is subject to slowdowns during heavy usage.
You can run your own GitLab runner that is dedicated just to your group if you need to avoid processing delays.

tecplottools.py 18.4 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
"""Tools for working with the Tecplot visualization software.

Requires an active Tecplot license and the pytecplot python package.
pytecplot ships with Tecplot 360 2017 R1 and later versions
but it is recommended that you install the latest version with
`pip install pytecplot`.
See the pytecplot documentation for more details about
[installation](https://www.tecplot.com/docs/pytecplot/install.html).
See also [TECPLOT](TECPLOT.markdown) for tips targeted to SWMF users.
11
12

Some useful references:
13
14
15
- [Tecplot User's Manual](download.tecplot.com/360/current/360_users_manual.pdf)
- [Tecplot Scripting Guide](download.tecplot.com/360/current/360_scripting_guide.pdf)
- [Pytecplot documentation](www.tecplot.com/docs/pytecplot/index.html)
16
17
"""
__all__ = [
18
19
    'apply_equations',
    'tecplot_interpolate'
20
21
]
__author__ = 'Camilla D. K. Harris'
22
__email__ = 'cdha@umich.edu'
23

24
25
26
import os
import re

27
import numpy as np
28
29
import tecplot

30
def apply_equations(eqn_path: str, verbose: bool = False) -> None:
31
32
33
    """Apply an equations file in the Tecplot macro format to the active dataset

    Please reference the Tecplot User's Manual for more details on
34
    equation files and syntax. It is recommended to use this function with eqn
35
36
    files generated with the Tecplot GUI.
    See [TECPLOT](TECPLOT.markdown) for tips on using pytecplot.
37

38
39
    Args:
        eqn_file_path (str): The path to the equation macro file (typically with
40
            extension `.eqn`).
41
42
        verbose (bool): (Optional) Whether or not to print the equations as they
            are applied. Default behavior is silent.
43

44
    Examples:
45
46
47
48
49
50
51
52
        ```python
        import tecplot
        import swmfpy.tecplottools as tpt

        ## Uncomment this line if you are connecting to a running tecplot
        ## session. Be sure that the port number matches the port the GUI is
        ## listening to. See TECPLOT.markdown for tips on connecting to a
        ## running session or running your script seperately.
Qusai Al Shidi's avatar
Qusai Al Shidi committed
53
        # tecplot.session.connect(port=7600)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

        ## load a dataset
        dataset = tecplot.data.load_tecplot('./z=0_mhd_1_n00000000.plt')

        ## apply an equations file
        tpt.apply_equations('./gse_to_ephio.eqn', verbose= True)

        ## apply a frame style
        frame = tecplot.active_frame()
        frame.load_stylesheet('./density.sty')

        ## annotate with the zone name
        frame.add_text('&(ZONENAME[ACTIVEOFFSET=1])', position= (5, 95))

        ## save the image
        tecplot.export.save_png('./density.png', width= 1200, supersample= 8)
        ```
    """
    if verbose:
        print('Executing:')
    with open(eqn_path, 'r') as eqn_file:
        for line in eqn_file:
76
77
78
79
80
81
82
83
84
85
            if '$!alterdata' in line.lower():
                eqn_line = eqn_file.readline()
                try:
                    eqn_str = eqn_line.split("'")[1]
                except IndexError:
                    try:
                        eqn_str = eqn_line.split("\"")[1]
                    except:
                        raise ValueError(f'Unable to read equation: {eqn_line}')
                tecplot.data.operate.execute_equation(eqn_str)
86
                if verbose:
87
                    print(eqn_str)
88
89
    if verbose:
        print('Successfully applied equations.')
90
91


92
def _shell_geometry(geometry_params: dict) -> dict:
93
94
    """Returns a dict containing points for the described shell geometry.
    """
95
96
    nlon = geometry_params['npoints'][0] # 360
    nlat = geometry_params['npoints'][1] # 179
97
98
    lons = np.linspace(0, 360, nlon, endpoint=False)
    dlat = 180/(nlat + 1)
99
    lats = np.linspace(-90.0+dlat, 90.0-dlat, nlat)
100
101
102
    print(f'lons: {lons}')
    print(f'lats: {lats}')

103
104
105
106
107
108
109
110
    latvals, lonvals = np.meshgrid(lats, lons)
    phvals = np.deg2rad(-1*lonvals + 90)
    thvals = np.deg2rad(90 - latvals)
    rhovals = geometry_params['radius'] * np.sin(thvals)
    xvals = rhovals * np.cos(phvals) + geometry_params['center'][0]
    yvals = rhovals * np.sin(phvals) + geometry_params['center'][1]
    zvals = (geometry_params['radius'] * np.cos(thvals)
             + geometry_params['center'][2])
111

112
    geometry_points = {
113
114
115
116
117
118
        'npoints': nlon * nlat,
        'latitude': latvals.flatten(),
        'longitude': lonvals.flatten(),
        'X': xvals.flatten(),
        'Y': yvals.flatten(),
        'Z': zvals.flatten()
119
120
    }
    return geometry_points
121
122


123
def _line_geometry(geometry_params: dict) -> dict:
124
125
    """Returns a dict containing points for the described line geometry.
    """
126
    geometry_points = {
127
128
129
130
131
132
133
134
135
136
137
138
139
        'npoints': geometry_params['npoints'],
        'X': np.linspace(
            geometry_params['r1'][0],
            geometry_params['r2'][0],
            geometry_params['npoints']),
        'Y': np.linspace(
            geometry_params['r1'][1],
            geometry_params['r2'][1],
            geometry_params['npoints']),
        'Z': np.linspace(
            geometry_params['r1'][2],
            geometry_params['r2'][2],
            geometry_params['npoints'])
140
141
    }
    return geometry_points
142
143


144
def _rectprism_geometry(geometry_params: dict) -> dict:
145
146
    """Returns a dict containing points for the described rectprism geometry.
    """
147
148
149
    npoints = (geometry_params['npoints'][0]
               * geometry_params['npoints'][1]
               * geometry_params['npoints'][2])
150
151
152
153
154
155
156
157
158
159
160
161
    vals = []
    for dim in range(3):
        minval = (geometry_params['center'][dim]
                  - geometry_params['halfwidths'][dim])
        maxval = (geometry_params['center'][dim]
                  + geometry_params['halfwidths'][dim])
        vals.append(np.linspace(
            minval,
            maxval,
            geometry_params['npoints'][dim]
        ))
    xvals, yvals, zvals = np.meshgrid(vals[0], vals[1], vals[2])
162
    geometry_points = {
163
164
165
166
        'npoints': npoints,
        'X': xvals.flatten(),
        'Y': yvals.flatten(),
        'Z': zvals.flatten(),
167
168
    }
    return geometry_points
169
170


171
def _trajectory_geometry(geometry_params: dict) -> dict:
172
    """Returns a dict containing points for the described trajectory geometry.
173
174

    Assumes format of trajectory file after SWMF SATELLITE command.
175
    """
176
177
    do_read = False
    trajectory_data = []
178
    with open(geometry_params['trajectory_data'], 'r') as trajectory_file:
179
180
181
182
183
184
185
186
        for line in trajectory_file:
            if do_read:
                if len(line.split()) == 10:
                    trajectory_data.append(line.split())
                else:
                    do_read = False
            elif '#START' in line:
                do_read = True
187
188
189
190
191
192
193
    try:
        assert len(trajectory_data) >= 1
    except:
        raise ValueError(
            'No points could be read from the trajectory file. Consult the '
            'SWMF documentation for advice on trajectory format.'
        )
194
    geometry_points = {
195
196
197
198
199
200
201
        'npoints': len(trajectory_data),
        'X': [float(trajectory_point[7])
              for trajectory_point in trajectory_data],
        'Y': [float(trajectory_point[8])
              for trajectory_point in trajectory_data],
        'Z': [float(trajectory_point[9])
              for trajectory_point in trajectory_data],
202
        'time': [((np.datetime64(
203
204
205
206
207
208
209
            f'{trajectory_point[0]}'
            f'-{trajectory_point[1]}'
            f'-{trajectory_point[2]}'
            f'T{trajectory_point[3]}'
            f':{trajectory_point[4]}'
            f':{trajectory_point[5]}'
            f'.{trajectory_point[6]}')
210
211
                   - np.datetime64('1970-01-01T00:00:00Z'))
                  / np.timedelta64(1, 's'))
212
                 for trajectory_point in trajectory_data]
213
    }
214
    return geometry_points
215
216


217
def _save_hdf5() -> None:
218
219
220
221
    """Save the aux data and a subset of the variables in hdf5 format.
    """


222
def _save_csv() -> None:
223
224
225
226
227
    """Save the aux data and a subset of the variables in plain-text format.
    """


def tecplot_interpolate(
228
229
230
231
232
233
234
235
        tecplot_plt_file_path: str
        , geometry: str
        , write_as: str
        , filename: str = None
        , tecplot_equation_file_path: str = None
        , tecplot_variable_pattern: str = None
        , verbose: bool = False
        , **kwargs
236
) -> None:
237
238
239
240
241
242
243
    """Interpolates Tecplot binary data onto various geometries.

    Args:
        tecplot_plt_file_path (str): Path to the tecplot binary file.
        geometry (str): Type of geometry for interpolation. Supported geometries
            are 'shell', 'line', 'rectprism', or 'trajectory'.
        write_as (str): Type of file to write to. Supported options are 'hdf5',
244
            'csv', 'tecplot_ascii', and 'tecplot_plt'.
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        filename (str): (Optional) Name of the file to write to. Defaults to a
            concatenation of the tecplot file name and the geometry type.
        tecplot_equation_file_path (str): (Optional) Path to an equation file to
            be applied to the tecplot dataset before interpolation. Defaults to
            no equations.
        tecplot_variable_pattern (str): (Optional) Regex-style variable name
            pattern used to save a subset of the variables. This option may be
            used to decrease the size of the hdf5 output. Default behavior is to
            save all variables.
        verbose: (Optional) Print diagnostic information. Defaults to False.

    Keyword Args:
        center (array-like): Argument for the 'shell' geometry. Contains the X,
            Y, and Z positions of the shell. Defaults to (0,0,0).
        radius (float): Argument for the 'shell' geometry. Required.
        npoints (array-like): Argument for the 'shell' geometry. Contains the
            number of points in the azimuthal and polar directions to
262
263
            interpolate onto, excluding the north and south polar points.
            Defaults to (360,179).
264
265
266
267
268
269
270
271
272
        r1 (array-like): Argument for the 'line' geometry. Contains the X, Y,
            and Z positions of the point where the line starts. Required.
        r2 (array-like): Argument for the 'line' geometry. Contains the X, Y,
            and Z positions of the point where the line ends. Required.
        npoints (int): Argument for the 'line' geometry. The number of points
            along the line to interpolate onto. Required.
        center (array-like): Argument for the 'rectprism' geometry. Contains the
            X, Y, and Z positions of the center of the rectangular prism.
            Defaults to (0,0,0).
273
        halfwidths (array-like): Argument for the 'rectprism' geometry. Contains
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            the half widths of the rectangular prism in the X, Y, and Z
            directions. Required.
        npoints (array-like): Argument for the 'rectprism' geometry. Contains
            the number of points in the X, Y, and Z directions to interpolate
            onto. Required.
        trajectory_data (str): Argument for the 'trajectory' geometry. The path
            to the ASCII trajectory data file. Required.
        trajectory_format (str): Argument for the 'trajectory' geometry. The
            format of the trajectory data file. Supported formats are 'tecplot'
            (data is a tecplot zone with 3D positional variables and 'time') and
            'batsrus' (data is formatted as described for the #SATELLITE
            command, see SWMF documentation). Required.

    Examples:
        ```tecplot_interpolate(
            tecplot_plt_file_path='./path/to/data.plt'
            ,geometry='shell'
            ,write_as='tecplot_ascii'
            ,center=[0.0, 0.0, 0.0]
            ,radius=1.01
        )

        tecplot_interpolate(
            tecplot_plt_file_path='./path/to/data.plt'
            ,geometry='line'
            ,write_as='tecplot_ascii'
            ,tecplot_equation_file_path='./path/to/equations.eqn'
            ,tecplot_variable_pattern='B.*|E.*'
            ,r1=[1.0, 0.0, 0.0]
            ,r2=[6.0, 0.0, 0.0]
            ,npoints=101
        )
        ```
    """
308
309
310
311
312
313
314
315
316
317
318
319
320
    if verbose:
        print('Collecting parameters')

    ## collect the geometry parameters
    geometry_params = {
        'kind':geometry
    }
    geometry_params.update(kwargs)

    ## assign defaults for shell
    if verbose:
        print('Adding defaults')
    if 'shell' in geometry_params['kind']:
321
322
323
324
325
326
327
328
        geometry_params['center'] = geometry_params.get(
            'center'
            , (0.0, 0.0, 0.0)
        )
        geometry_params['npoints'] = geometry_params.get(
            'npoints'
            , (359, 181)
        )
329
    elif 'rectprism' in geometry_params['kind']:
330
331
332
333
        geometry_params['center'] = geometry_params.get(
            'center'
            , (0.0, 0.0, 0.0)
        )
334
335
336

    ## check that we support the geometry
    geometry_param_names = {
337
338
339
340
        'shell': ('radius',),
        'line': ('r1', 'r2', 'npoints'),
        'rectprism': ('halfwidths', 'npoints'),
        'trajectory': ('trajectory_data', 'trajectory_format')
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    }
    if geometry_params['kind'] not in geometry_param_names:
        raise ValueError(f'Geometry {geometry_params["kind"]} not supported!')

    ## check that we've gotten the right /required/ geometry arguments
    for param in geometry_param_names[geometry_params['kind']]:
        if param not in geometry_params:
            raise TypeError(
                f'Geometry {geometry_params["kind"]} '
                f'requires argument {param}!')

    ## check that we support the file type to save as
    file_types = (
        'hdf5'
355
356
357
        , 'csv'
        , 'tecplot_ascii'
        , 'tecplot_plt'
358
359
360
361
362
363
364
    )
    if write_as not in file_types:
        raise ValueError(f'File type {write_as} not supported!')

    ## describe the interpolation we're about to do on the data
    if verbose:
        print('Geometry to be interpolated:')
365
        for key, value in geometry_params.items():
366
367
368
369
            print(f'\t{key}: {value.__repr__()}')

    ## check whether we are using equations
    ## check that the equations file is there
370
    use_equations = not tecplot_equation_file_path is None
371
    if use_equations:
372
373
        equations_file = open(tecplot_equation_file_path, 'r')
        equations_file.close()
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        if verbose:
            print('Applying equations from file:')
            print(tecplot_equation_file_path)
    else:
        if verbose:
            print('Not applying any equations')

    ## check patterns
    if not (tecplot_variable_pattern is None) and verbose:
        print(f'Applying pattern {tecplot_variable_pattern} to variables')

    ## check that the tecplot file is there
    if not os.path.exists(tecplot_plt_file_path):
        raise FileNotFoundError(
            f'Tecplot file does not exist: {tecplot_plt_file_path}')
389

390
391
392
393
394
395
396
397
398
399
400
401
402
    ## load the tecplot data
    if verbose:
        print('Loading tecplot data')
    batsrus = tecplot.data.load_tecplot(tecplot_plt_file_path)

    ## describe the loaded tecplot data
    if verbose:
        print('Loaded tecplot data with variables:')
        print(batsrus.variable_names)

    ## apply equations
    if verbose:
        print('Applying equations to data')
403
    apply_equations(tecplot_equation_file_path)
404
405
406
407
408
409
    if verbose:
        print('Variables after equations:')
        print(batsrus.variable_names)

    ## create geometry zone
    if 'shell' in geometry_params['kind']:
410
        geometry_points = _shell_geometry(geometry_params)
411
    elif 'line' in geometry_params['kind']:
412
        geometry_points = _line_geometry(geometry_params)
413
    elif 'rectprism' in geometry_params['kind']:
414
        geometry_points = _rectprism_geometry(geometry_params)
415
    elif 'trajectory' in geometry_params['kind']:
416
417
        if 'batsrus' in geometry_params['trajectory_format']:
            geometry_points = _trajectory_geometry(geometry_params)
418
419

    source_zone = list(batsrus.zones())
420
    if ('trajectory' in geometry_params['kind']
421
            and 'tecplot' in geometry_params['trajectory_format']):
422
        batsrus = tecplot.data.load_tecplot(
423
            filenames=geometry_params['trajectory_data']
424
            , read_data_option=tecplot.constant.ReadDataOption.Append
425
        )
426
        new_zone = batsrus.zone(-1)
427
428
429
430
431
432
        new_zone.name = 'geometry'
    else:
        new_zone = batsrus.add_ordered_zone(
            'geometry'
            , geometry_points['npoints']
        )
433
434
        for i, direction in zip((0, 1, 2), ('X', 'Y', 'Z')):
            new_zone.values(i)[:] = geometry_points[direction][:]
435

436
437
438
    ## interpolate variables on to the geometry
    if verbose:
        print('Interpolating variables:')
439
    positions = list(batsrus.variables('*[[]R[]]'))
440
441
442
443
444
445
    variables = list(batsrus.variables(re.compile(tecplot_variable_pattern)))
    if verbose:
        for var in variables:
            print(var.name)
    tecplot.data.operate.interpolate_linear(
        destination_zone=new_zone
446
447
        , source_zones=source_zone
        , variables=variables
448
449
450
    )
    ## add variables for shell and trajectory cases
    if 'shell' in  geometry_params['kind']:
451
452
453
454
455
        batsrus.add_variable('latitude [deg]')
        new_zone.values('latitude [[]deg[]]')[:] = geometry_points['latitude']
        batsrus.add_variable('longitude [deg]')
        new_zone.values('longitude [[]deg[]]')[:] = geometry_points['longitude']
        variables = variables + list(batsrus.variables('*itude [[]deg[]]'))
456
457
    if 'trajectory' in geometry_params['kind']:
        batsrus.add_variable('time')
458
459
460
        if 'batsrus' in geometry_params['trajectory_format']:
            new_zone.values('time')[:] = geometry_points['time']
        variables = variables + [batsrus.variable('time')]
461
462
463
464

    ## add auxiliary data
    new_zone.aux_data.update(geometry_params)
    if ('trajectory' in geometry_params['kind']
465
            and 'pandas' in geometry_params['trajectory_format']):
466
467
468
469
470
        new_zone.aux_data.update(
            {'trajectory_data': type(geometry_params['trajectory_data'])}
        )

    ## construct default filename
471
    no_file_name = False
472
    if filename is None:
473
        no_file_name = True
474
        filename = tecplot_plt_file_path[:-4] + f'_{geometry_params["kind"]}'
475

476
477
    ## save zone
    if 'hdf5' in write_as:
478
479
        if no_file_name:
            filename += '.h5'
480
481
        _save_hdf5()
    elif 'csv' in write_as:
482
483
        if no_file_name:
            filename += '.csv'
484
        _save_csv()
485
    elif 'tecplot_ascii' in write_as:
486
487
        if no_file_name:
            filename += '.dat'
488
489
        tecplot.data.save_tecplot_ascii(
            filename
490
            , zones=new_zone
491
492
            , variables=positions + variables
            , use_point_format=True
493
494
        )
    elif 'tecplot_plt' in write_as:
495
496
        if no_file_name:
            filename += '.plt'
497
498
        tecplot.data.save_tecplot_plt(
            filename
499
            , zones=new_zone
500
            , variables=positions + variables
501
        )
502
503
    if verbose:
        print(f'Wrote {filename}')