Note: The default ITS GitLab runner is a shared resource and is subject to slowdowns during heavy usage.
You can run your own GitLab runner that is dedicated just to your group if you need to avoid processing delays.

tecplottools.py 21.9 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
"""Tools for working with the Tecplot visualization software.

Requires an active Tecplot license and the pytecplot python package.
pytecplot ships with Tecplot 360 2017 R1 and later versions
but it is recommended that you install the latest version with
`pip install pytecplot`.
See the pytecplot documentation for more details about
[installation](https://www.tecplot.com/docs/pytecplot/install.html).
See also [TECPLOT](TECPLOT.markdown) for tips targeted to SWMF users.
11
12

Some useful references:
13
14
15
- [Tecplot User's Manual](download.tecplot.com/360/current/360_users_manual.pdf)
- [Tecplot Scripting Guide](download.tecplot.com/360/current/360_scripting_guide.pdf)
- [Pytecplot documentation](www.tecplot.com/docs/pytecplot/index.html)
16
17
"""
__all__ = [
18
    'apply_equations',
19
    'bracketify',
20
21
    'write_zone',
    'interpolate_zone_to_geometry'
22
23
]
__author__ = 'Camilla D. K. Harris'
24
__email__ = 'cdha@umich.edu'
25

26
import h5py
27
import numpy as np
28
29
import tecplot

30

31
def _shell_geometry(geometry_params: dict) -> dict:
32
33
    """Returns a dict containing points for the described shell geometry.
    """
34
35
    nlon = geometry_params['npoints'][0] # 360
    nlat = geometry_params['npoints'][1] # 179
36
37
    lons = np.linspace(0, 360, nlon, endpoint=False)
    dlat = 180/(nlat + 1)
38
    lats = np.linspace(-90.0+dlat, 90.0-dlat, nlat)
39

40
41
42
43
44
45
46
47
    latvals, lonvals = np.meshgrid(lats, lons)
    phvals = np.deg2rad(-1*lonvals + 90)
    thvals = np.deg2rad(90 - latvals)
    rhovals = geometry_params['radius'] * np.sin(thvals)
    xvals = rhovals * np.cos(phvals) + geometry_params['center'][0]
    yvals = rhovals * np.sin(phvals) + geometry_params['center'][1]
    zvals = (geometry_params['radius'] * np.cos(thvals)
             + geometry_params['center'][2])
48

49
    geometry_points = {
50
51
52
53
54
55
        'npoints': nlon * nlat,
        'latitude': latvals.flatten(),
        'longitude': lonvals.flatten(),
        'X': xvals.flatten(),
        'Y': yvals.flatten(),
        'Z': zvals.flatten()
56
57
    }
    return geometry_points
58
59


60
def _line_geometry(geometry_params: dict) -> dict:
61
62
    """Returns a dict containing points for the described line geometry.
    """
63
    geometry_points = {
64
65
66
67
68
69
70
71
72
73
74
75
76
        'npoints': geometry_params['npoints'],
        'X': np.linspace(
            geometry_params['r1'][0],
            geometry_params['r2'][0],
            geometry_params['npoints']),
        'Y': np.linspace(
            geometry_params['r1'][1],
            geometry_params['r2'][1],
            geometry_params['npoints']),
        'Z': np.linspace(
            geometry_params['r1'][2],
            geometry_params['r2'][2],
            geometry_params['npoints'])
77
78
    }
    return geometry_points
79
80


81
def _rectprism_geometry(geometry_params: dict) -> dict:
82
83
    """Returns a dict containing points for the described rectprism geometry.
    """
84
85
86
    npoints = (geometry_params['npoints'][0]
               * geometry_params['npoints'][1]
               * geometry_params['npoints'][2])
87
88
89
90
91
92
93
94
95
96
97
98
    vals = []
    for dim in range(3):
        minval = (geometry_params['center'][dim]
                  - geometry_params['halfwidths'][dim])
        maxval = (geometry_params['center'][dim]
                  + geometry_params['halfwidths'][dim])
        vals.append(np.linspace(
            minval,
            maxval,
            geometry_params['npoints'][dim]
        ))
    xvals, yvals, zvals = np.meshgrid(vals[0], vals[1], vals[2])
99
    geometry_points = {
100
101
102
103
        'npoints': npoints,
        'X': xvals.flatten(),
        'Y': yvals.flatten(),
        'Z': zvals.flatten(),
104
105
    }
    return geometry_points
106
107


108
def _trajectory_geometry(geometry_params: dict) -> dict:
109
    """Returns a dict containing points for the described trajectory geometry.
110
111

    Assumes format of trajectory file after SWMF SATELLITE command.
112
    """
113
114
    do_read = False
    trajectory_data = []
115
    with open(geometry_params['trajectory_data'], 'r') as trajectory_file:
116
117
118
119
120
121
122
123
        for line in trajectory_file:
            if do_read:
                if len(line.split()) == 10:
                    trajectory_data.append(line.split())
                else:
                    do_read = False
            elif '#START' in line:
                do_read = True
124
125
126
127
128
129
130
    try:
        assert len(trajectory_data) >= 1
    except:
        raise ValueError(
            'No points could be read from the trajectory file. Consult the '
            'SWMF documentation for advice on trajectory format.'
        )
131
    geometry_points = {
132
133
134
135
136
137
138
        'npoints': len(trajectory_data),
        'X': [float(trajectory_point[7])
              for trajectory_point in trajectory_data],
        'Y': [float(trajectory_point[8])
              for trajectory_point in trajectory_data],
        'Z': [float(trajectory_point[9])
              for trajectory_point in trajectory_data],
139
        'time': [((np.datetime64(
140
141
142
143
144
145
146
            f'{trajectory_point[0]}'
            f'-{trajectory_point[1]}'
            f'-{trajectory_point[2]}'
            f'T{trajectory_point[3]}'
            f':{trajectory_point[4]}'
            f':{trajectory_point[5]}'
            f'.{trajectory_point[6]}')
147
148
                   - np.datetime64('1970-01-01T00:00:00Z'))
                  / np.timedelta64(1, 's'))
149
                 for trajectory_point in trajectory_data]
150
    }
151
    return geometry_points
152
153


154
def _save_hdf5(filename, geometry_params, new_zone, variables) -> None:
155
156
    """Save the aux data and a subset of the variables in hdf5 format.
    """
157
158
159
160
161
162
163
164
165
    column_names = [var.name for var in variables]
    tp_data = []
    for var in variables:
        tp_data.append(new_zone.values(var)[:])
    tp_data_np = np.array(tp_data).transpose()
    with h5py.File(filename, 'w-') as h5_file:
        h5_file['data'] = tp_data_np
        h5_file['data'].attrs.update(geometry_params)
        h5_file['data'].attrs['names'] = column_names
166
167


168
def _save_csv(filename, geometry_params, new_zone, variables) -> None:
169
170
    """Save the aux data and a subset of the variables in plain-text format.
    """
171
172
173
    aux_data = geometry_params.__repr__() + '\n'
    column_names = variables[0].name.__repr__()
    for var in variables[1:]:
174
        column_names += ',' + var.name.__repr__()
175
176
177
178
179
180
181
    tp_data = []
    for var in variables:
        tp_data.append(new_zone.values(var)[:])
    tp_data_np = np.array(tp_data).transpose()
    np.savetxt(
        filename,
        tp_data_np,
182
        delimiter=',',
183
184
185
        header=aux_data + column_names,
        comments=''
    )
186
187


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def _add_variable_value(dataset, variable_name: str, zone, values):
    """Adds and populates a new variable to a zone in a dataset."""
    dataset.add_variable(variable_name)
    zone.values(bracketify(variable_name))[:] = values


def apply_equations(eqn_path: str, verbose: bool = False) -> None:
    """Apply an equations file in the Tecplot macro format to the active dataset

    Please reference the Tecplot User's Manual for more details on
    equation files and syntax. It is recommended to use this function with eqn
    files generated with the Tecplot GUI.
    See [TECPLOT](TECPLOT.markdown) for tips on using pytecplot.

    Args:
        eqn_file_path (str): The path to the equation macro file (typically with
            extension `.eqn`).
        verbose (bool): (Optional) Whether or not to print the equations as they
            are applied. Default behavior is silent.

    Examples:
        ```python
        import tecplot
        import swmfpy.tecplottools as tpt

        ## Uncomment this line if you are connecting to a running tecplot
        ## session. Be sure that the port number matches the port the GUI is
        ## listening to. See TECPLOT.markdown for tips on connecting to a
        ## running session or running your script seperately.
        # tecplot.session.connect(port=7600)

        ## load a dataset
        dataset = tecplot.data.load_tecplot('./z=0_mhd_1_n00000000.plt')

        ## apply an equations file
        tpt.apply_equations('./gse_to_ephio.eqn', verbose= True)

        ## apply a frame style
        frame = tecplot.active_frame()
        frame.load_stylesheet('./density.sty')

        ## annotate with the zone name
        frame.add_text('&(ZONENAME[ACTIVEOFFSET=1])', position= (5, 95))

        ## save the image
        tecplot.export.save_png('./density.png', width= 1200, supersample= 8)
        ```
    """
    if verbose:
        print('Executing:')
    with open(eqn_path, 'r') as eqn_file:
        for line in eqn_file:
            if '$!alterdata' in line.lower():
                eqn_line = eqn_file.readline()
                try:
                    eqn_str = eqn_line.split("'")[1]
                except IndexError:
                    try:
                        eqn_str = eqn_line.split("\"")[1]
                    except:
                        raise ValueError(f'Unable to read equation: {eqn_line}')
                tecplot.data.operate.execute_equation(eqn_str)
                if verbose:
                    print(eqn_str)
    if verbose:
        print('Successfully applied equations.')


def bracketify(variable_name: str) -> str:
257
    """Surrounds square brackets with more brackets in a string.
258
259
260

    This is helpful for accessing Tecplot variables.

261
262
263
264
    Args:
        variable_name (str): A string which may contain the meta-characters * ?
        [ or ].

265
266
267
268
269
270
271
272
273
274
275
276
277
    Examples:
        In a dataset which contains the variable 'X [R]',
        ```print(dataset.variable_names)
        >>> ['X [R]', ... ]```
        The following will fail:
        ```print(dataset.variable('X [R]').name)
        >>> TecplotPatternMatchWarning: no variables found matching: "X [R]" For
        a literal match, the meta-characters: * ? [ ] must be wrapped in square-
        brackets. For example, "[?]" matches the character "?"...```
        However,
        ```print(dataset.variable(tpt.bracketify('X [R]')).name)```
        will succeed.
    """
278
279
280
281
282
283
284
    translation = {
        '[':'[[]',
        ']':'[]]',
        '*':'[*]',
        '?':'[?]'
    }
    return variable_name.translate(str.maketrans(translation))
285
286


287
def write_zone(
288
289
        tecplot_dataset
        , tecplot_zone
290
291
292
293
294
295
296
297
        , write_as: str
        , filename: str
        , variables=None
        , verbose: bool = False
) -> None:
    """Writes a tecplot zone to various formats.

    Args:
298
        tecplot_dataset (): The dataset to save.
299
300
301
302
303
304
305
306
        tecplot_zone (): The zone to save.
        write_as (str): Type of file to write to. Supported options are 'hdf5',
            'csv', 'tecplot_ascii', and 'tecplot_plt'.
        filename (str): Name of the file to write to.
        variables (): (Optional) Specify a subset of the dataset variables to
            save. This option may decrease the size of the output. Default
            behavior is to save all variables.
        verbose: (Optional) Print diagnostic information. Defaults to False.
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

    Examples:
        ```python
        import tecplot
        import swmfpy.tecplottools as tpt

        ## load a dataset and configure the layout
        dataset = tecplot.data.load_tecplot(
            '3d__mhd_1_n00000100.plt')
        frame = tecplot.active_frame()
        frame.plot_type = tecplot.constant.PlotType.Cartesian3D
        plot = frame.plot()

        ## set the vector variables
        plot.vector.u_variable = dataset.variable(4)
        plot.vector.v_variable = dataset.variable(5)
        plot.vector.w_variable = dataset.variable(6)

        ## seed and extract a streamtrace
        plot.streamtraces.add(
            seed_point=(1.5, 1.0, 0.0),
            stream_type=tecplot.constant.Streamtrace.VolumeLine
        )
        streamtrace_zones = plot.streamtraces.extract()
        new_zone = next(streamtrace_zones)

        ## write the new zone to hdf5 format
        tpt.write_zone(
            tecplot_dataset=dataset,
            tecplot_zone=new_zone,
            write_as='hdf5',
            filename='streamtrace.h5'
        )
        ```
341
    """
342
    if verbose and variables:
343
344
345
346
347
348
        print('Saving variables:')
        for var in variables:
            print(var.name)
    aux_data = tecplot_zone.aux_data.as_dict()
    if verbose:
        print('Attaching auxiliary data:')
349
        print(aux_data.__repr__())
350
351
352
353
354
355
    ## save zone
    if verbose:
        print('Saving as:')
    if 'hdf5' in write_as:
        if verbose:
            print('hdf5')
356
357
        if not variables:
            variables = list(tecplot_dataset.variables())
358
359
360
361
362
363
364
        _save_hdf5(
            filename,
            aux_data,
            tecplot_zone,
            variables
        )
    elif 'csv' in write_as:
365
366
        if not variables:
            variables = list(tecplot_dataset.variables())
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        _save_csv(
            filename,
            aux_data,
            tecplot_zone,
            variables
        )
    elif 'tecplot_ascii' in write_as:
        tecplot.data.save_tecplot_ascii(
            filename
            , zones=tecplot_zone
            , variables=variables
            , use_point_format=True
        )
    elif 'tecplot_plt' in write_as:
        tecplot.data.save_tecplot_plt(
            filename
            , zones=tecplot_zone
            , variables=variables
        )
386
387
    else:
        raise ValueError(f'File type {write_as} not supported!')
388
389
390
391
    if verbose:
        print(f'Wrote {filename}')


392
393
394
def interpolate_zone_to_geometry(
        dataset
        , source_zone
395
        , geometry: str
396
        , variables: list = None
397
398
        , verbose: bool = False
        , **kwargs
399
):
400
401
402
    """Interpolates Tecplot binary data onto various geometries.

    Args:
403
404
        dataset: The loaded Tecplot dataset.
        source_zone: The Tecplot zone to interpolate onto the geometry.
405
        geometry (str): Type of geometry for interpolation. Supported geometries
406
407
408
409
            are 'shell', 'line', 'rectprism', or 'trajectory'. See below for the
            required keyword arguments for each geometry.
        variables (list): (Optional) Subset of variables to interpolate. Default
            behavior is to interpolate all variables.
410
411
412
413
414
415
416
417
        verbose: (Optional) Print diagnostic information. Defaults to False.

    Keyword Args:
        center (array-like): Argument for the 'shell' geometry. Contains the X,
            Y, and Z positions of the shell. Defaults to (0,0,0).
        radius (float): Argument for the 'shell' geometry. Required.
        npoints (array-like): Argument for the 'shell' geometry. Contains the
            number of points in the azimuthal and polar directions to
418
419
            interpolate onto, excluding the north and south polar points.
            Defaults to (360,179).
420
421
422
423
424
425
426
427
428
        r1 (array-like): Argument for the 'line' geometry. Contains the X, Y,
            and Z positions of the point where the line starts. Required.
        r2 (array-like): Argument for the 'line' geometry. Contains the X, Y,
            and Z positions of the point where the line ends. Required.
        npoints (int): Argument for the 'line' geometry. The number of points
            along the line to interpolate onto. Required.
        center (array-like): Argument for the 'rectprism' geometry. Contains the
            X, Y, and Z positions of the center of the rectangular prism.
            Defaults to (0,0,0).
429
        halfwidths (array-like): Argument for the 'rectprism' geometry. Contains
430
431
432
433
434
435
436
437
438
439
440
441
            the half widths of the rectangular prism in the X, Y, and Z
            directions. Required.
        npoints (array-like): Argument for the 'rectprism' geometry. Contains
            the number of points in the X, Y, and Z directions to interpolate
            onto. Required.
        trajectory_data (str): Argument for the 'trajectory' geometry. The path
            to the ASCII trajectory data file. Required.
        trajectory_format (str): Argument for the 'trajectory' geometry. The
            format of the trajectory data file. Supported formats are 'tecplot'
            (data is a tecplot zone with 3D positional variables and 'time') and
            'batsrus' (data is formatted as described for the #SATELLITE
            command, see SWMF documentation). Required.
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    Examples:
        ```python
        import tecplot
        import swmfpy.tecplottools as tpt

        tecplot.session.connect(port=7600)

        ## Load a dataset and configure the layout.
        dataset = tecplot.data.load_tecplot('3d__mhd_1_n00000100.plt')

        ## Create a new zone with the specified geometry
        ## and interpolate data onto it.

        ## geometry: shell
        tpt.interpolate_zone_to_geometry(
            dataset=dataset,
            source_zone=dataset.zone(0),
            geometry='shell',
            radius=1.5,
            npoints=(4,3)
        )

        ## geometry: line
        tpt.interpolate_zone_to_geometry(
            dataset=dataset,
            source_zone=dataset.zone(0),
            geometry='line',
            r1=[1.0, 0.0, 0.0],
            r2=[3.0, 0.0, 0.0],
            npoints=100
        )

        ## geometry: rectangular prism
        new_zone = tpt.interpolate_zone_to_geometry(
            dataset=dataset,
            source_zone=dataset.zone(0),
            geometry='rectprism',
            center=[0.0, 0.0, 0.0],
            halfwidths=[2.0, 2.0, 2.0],
            npoints=[5, 5, 5]
        )

        ## geometry: spacecraft trajectory as specified for the
        ## BATSRUS #SATELLITE command
        tpt.interpolate_zone_to_geometry(
            dataset=dataset,
            source_zone=dataset.zone(0),
            geometry='trajectory',
            trajectory_format='batsrus',
            trajectory_data='./test_data/satellite_e4.dat'
        )

        ## The new zones are labeled with the name of the geometry and can be
        ## manipulated in the Tecplot GUI.
        ```

499
    """
500
501
502
503
504
    if verbose:
        print('Collecting parameters')

    ## collect the geometry parameters
    geometry_params = {
505
        'geometry':geometry
506
507
508
509
510
    }
    geometry_params.update(kwargs)

    if verbose:
        print('Adding defaults')
511
512
    ## assign defaults for shell and rectprism
    if 'shell' in geometry_params['geometry']:
513
514
515
516
517
518
519
520
        geometry_params['center'] = geometry_params.get(
            'center'
            , (0.0, 0.0, 0.0)
        )
        geometry_params['npoints'] = geometry_params.get(
            'npoints'
            , (359, 181)
        )
521
    elif 'rectprism' in geometry_params['geometry']:
522
523
524
525
        geometry_params['center'] = geometry_params.get(
            'center'
            , (0.0, 0.0, 0.0)
        )
526
527
528

    ## check that we support the geometry
    geometry_param_names = {
529
530
531
532
        'shell': ('radius',),
        'line': ('r1', 'r2', 'npoints'),
        'rectprism': ('halfwidths', 'npoints'),
        'trajectory': ('trajectory_data', 'trajectory_format')
533
    }
534
535
536
    if geometry_params['geometry'] not in geometry_param_names:
        raise ValueError(f'Geometry {geometry_params["geometry"]} '
                         'not supported!')
537
    ## check that we've gotten the right /required/ geometry arguments
538
    for param in geometry_param_names[geometry_params['geometry']]:
539
540
        if param not in geometry_params:
            raise TypeError(
541
                f'Geometry {geometry_params["geometry"]} '
542
543
544
545
546
                f'requires argument {param}!')

    ## describe the interpolation we're about to do on the data
    if verbose:
        print('Geometry to be interpolated:')
547
        for key, value in geometry_params.items():
548
549
550
551
552
            print(f'\t{key}: {value.__repr__()}')

    ## describe the loaded tecplot data
    if verbose:
        print('Loaded tecplot data with variables:')
553
        print(dataset.variable_names)
554
555

    ## create geometry zone
556
    if 'shell' in geometry_params['geometry']:
557
        geometry_points = _shell_geometry(geometry_params)
558
    elif 'line' in geometry_params['geometry']:
559
        geometry_points = _line_geometry(geometry_params)
560
    elif 'rectprism' in geometry_params['geometry']:
561
        geometry_points = _rectprism_geometry(geometry_params)
562
    elif 'trajectory' in geometry_params['geometry']:
563
564
        if 'batsrus' in geometry_params['trajectory_format']:
            geometry_points = _trajectory_geometry(geometry_params)
565

566
    if ('trajectory' in geometry_params['geometry']
567
            and 'tecplot' in geometry_params['trajectory_format']):
568
        dataset = tecplot.data.load_tecplot(
569
            filenames=geometry_params['trajectory_data']
570
            , read_data_option=tecplot.constant.ReadDataOption.Append
571
        )
572
        dataset.zone(-1).name = geometry_params['geometry']
573
    else:
574
        dataset.add_ordered_zone(
575
            geometry_params['geometry']
576
577
            , geometry_points['npoints']
        )
578
        for i, direction in zip((0, 1, 2), ('X', 'Y', 'Z')):
579
            dataset.zone(geometry_params['geometry']).values(i)[:] = \
580
                geometry_points[direction][:]
581

582
    ## interpolate variables on to the geometry
583
    if verbose and variables:
584
585
586
        print('Interpolating variables:')
        for var in variables:
            print(var.name)
587
588
589
    ## dataset.variables('...') will return a generator of variables.
    ## This call will break if `variables` is not recast as a list before
    ## passing it to the function. Why?????
590
    tecplot.data.operate.interpolate_linear(
591
        destination_zone=dataset.zone(geometry_params['geometry']),
592
593
        source_zones=source_zone,
        variables=variables
594
    )
595

596
597
598
599
600
    ## add variables for shell and trajectory cases
    if 'shell' in  geometry_params['geometry']:
        _add_variable_value(
            dataset,
            'latitude [deg]',
601
            dataset.zone(geometry_params['geometry']),
602
            geometry_points['latitude']
603
        )
604
605
606
        _add_variable_value(
            dataset,
            'longitude [deg]',
607
            dataset.zone(geometry_params['geometry']),
608
            geometry_points['longitude']
609
        )
610
611
612
613
614
    if ('trajectory' in geometry_params['geometry']
            and 'batsrus' in geometry_params['trajectory_format']):
        _add_variable_value(
            dataset,
            'time',
615
            dataset.zone(geometry_params['geometry']),
616
            geometry_points['time']
617
        )
618
        geometry_params['time_seconds_since'] = '1970-01-01T00:00:00Z'
619

620
621
    ## add auxiliary data
    dataset.zone(geometry_params['geometry']).aux_data.update(geometry_params)
622

623
    return dataset.zone(geometry_params['geometry'])